Use of Discrete Wavelet Transformations to identify groups in otolith chemistry profiles

Christian Denney*, James Hobbs, Malte Willmes, Levi Lewis

Wildlife, Fish and Conservation Biology, UC Davis. Contact: ctdenney@ucdavis.edu

Introduction

• Time series analysis is becoming an increasingly widespread tool in ecological sciences. As time series become more widespread, comparing large numbers of time series will become more and more important. Making time series comparisons computationally efficient is therefore a pressing issue. In order to test efficient pattern matching and clustering techniques, we chose to use Delta Smelt otolith microchemistry profiles. • Delta Smelt, Hypomesus transpacificus, is a small euryhaline fish endemic to the Sacramento-San Joaquin River Delta and is nearing extinction in the wild. Multiple factors have been identified as drivers of Delta Smelt abundance including entrainment in agriculture diversions in the South Delta. Delta Smelt are known to spawn in freshwater and rear to adulthood in brackish water resulting in two periods in the life history where individuals are vulnerable to diversion.

Methods

- Otoliths were analyzed according to Hobbs et al. 2010¹
- Chemistry data was paired to increment data by matching the proportion along either the aging or the chemistry transects. (i.e. the chemistry data 50% of the distance along the transect was paired to the 90th increment on a 180 day old fish).
- Because the laser signal can degrade near the edge of the otolith and the regions of primary interest were the natal and migratory regions, only the data from the first 170 increments was used. Plots were generated using the full profiles.
- Time series were clustered using the Discrete Wavelet Transformation (DWT) technique.
- Two additional techniques were compared for calculation speed.

^o Dynamic Time Warping (DTW)

Symbolic Aggregate approXimation (SAX)

Photo: Christina Parker

UCDAVIS

WILDLIFE, FISH, &

CONSERVATION BIOLOG

0.7092 -

0.7088 -

0.7084

- Using laser ablation techniques, we can reconstruct a time series of isotope ratios to infer individual life histories. However, examining life history patterns of many individuals is challenging, time consuming, and subjective. In this study, we utilized a time series approach to efficiently characterize individual life histories.

Objectives

- Differentiate a large number of different time series patterns in a fast, computationally efficient manner.
- Use Delta Smelt Strontium isotope chemistry profiles to compare clustering techniques
- Clusters should represent logically consistent life history patterns

• Freshwater Residents (FWR)

• Brackish Water Residents (BWR)

• Migrants (MIG)

- Differentiation of MIG based on natal origin.
- Differentiation of MIG based on timing of migration.

Mixing model describing the relationship between salinity and Sr isotope ratio. Each vertical line represents a sample point in the Delta. Stable ocean salinity is found at the isotopic ratio of 0.70918.

The ⁸⁷Sr/⁸⁶Sr ratio profile of the otolith from core to edge is used to determine migration to the low salinity zone based on the established Sr:salinity curve. Various Sr isotopic ratio values throughout the delta can be seen in this isoscape.

1: Hobbs, JA, Lewis, LS., Ikemiyagi, N., Sommer, T., Baxter., R. The use of otolith strontium isotopes (⁸⁷Sr/⁸⁶Sr) to identify nursery habitat for a threatened estuarine fish. (2010) *Environmental biology of fishes*. 89 (3-4), pp. 557-569.

Salinity

Results

Life History Clusters All Profiles

The full collection of all analyzed profiles is a difficult to interpret mess. It looks like there are some large patterns but any nuance that may exist is non-obvious. A method to quickly and efficiently collect whatever patterns may exist is necessary.

DWT correctly separates out Migrants from both Freshwater and Brackish residents. The various migrant groups also seem to differ in natal origin and timing of migration. Clusters are well defined.

Both Dynamic Time Warping and Sax computation time increased exponentially with increasing number of time series while Discrete Wavelet Transformation increased linearly with comparison of increasing number of time series. In ion to being slower, the clusters ed by DTW and SAX are less ally consistent than those created by

Acknowledgments

any two time series.

Special thanks to Randy Baxter and Kathy Hieb at CA Dept. of Fish and Wildlife as well as to Justin Glessner at the UC Davis ICPMS Laboratory. This project was funded by California Department of Fish and Wildlife,

Agreement number P1696005

0	100	200	300	400	additi
					create
Number of Time Series Being Compared					logica

Discussion

- The timing results may not seem that substantial, even 140 seconds is not very long, but we used only 400 fish for this test while we have over 2000 in our database. • We collect or receive more every year
- Discrete Wavelet Transformation creates markedly better clusters while taking two orders of magnitude less time to produce those results.
 - We estimate the clustering all the Delta Smelt with DTW would take over and hour, and over 30 minutes for SAX. DWT takes less than ten seconds.
 - Clustering is usually performed many times as an exploratory technique.
- Our group is still exploring time series clustering and if you have any new techniques or suggestions on better ways to cluster, we would love your feedback.